
Course Enrollment Recommender System
Hana Bydžovská

CSU and KD Lab Faculty of Informatics
Masaryk University, Brno

bydzovska@fi.muni.cz

ABSTRACT

One of the main problems faced by university students is to create

and manage the semester course plan. In this paper, we present a

course enrollment recommender system based on data mining

techniques. The system mainly helps with students’ enrollment

decisions. More specifically, it provides recommendation of

selective and optional courses with respect to students’ skills,

knowledge, interests and free time slots in their timetables. The

system also warns students against difficult courses and reminds

them mandatory study duties. We evaluate the usability of

designed methods by analyzing real-world data obtained from the

Information System of Masaryk University.

Keywords

Course enrollment recommender system, student performance,

prerequisites, university information system.

1. INTRODUCTION
Recommender systems can be used in different fields including

educational environment. Such systems are mainly focused on

providing high educational standard and try to enhance the

process of teaching and learning [13]. They help with searching

for suitable web resources [8], recommend good solutions to

improve students’ knowledge [4], or analyze data obtained from

quizzes and provide a feedback to instructor to modify a quiz [9].

Nowadays, researchers also try to improve personalized searching

for beneficial courses. The aim of several projects was to select

courses in order to obtain good exam results [12] or recommend

elective course modules based on previous students’ enrollments

using collaborative filtering techniques [6]. Other option is to

utilize association rules [1] or ant colony optimization [11].

In the last few years, recommendations became more complex.

Besides selecting passable courses, it is essential to recommend

beneficial courses [3]. The suitability of courses was determined

by the importance in all fields of the university, the ratio of

connectivity among courses and by the importance in the

student’s field of study. Association rules were utilized for

searching relationships between courses. Another approach was

presented in [7]. To graduate, all defined blocks of courses must

be completed by finishing a pre-defined number of courses. They

utilized a flow algorithm to find the minimal set of courses that

students have to pass.

In this paper, we present a pilot version of the course enrollment

recommender system designed at the Faculty of Informatics

Masaryk University. All methods were validated on data

originated from the Information System of Masaryk University

(IS MU). The data contain information on courses, templates

defining the mandatory and selective courses, students, study-

related attributes, and social behavior data. The designed methods

predict students’ final grades and recommend them interesting

courses with respect to their skills, interests, and free time-slots in

the timetable.

2. COURSE ENROLLMENT

RECOMMENDER SYSTEM

2.1 Motivation
All students have to follow the obligations and principles stated

by their university. Especially at the beginning of the study, it is

hard for students to cover all the mandatory duties. At Masaryk

University, all semesters are preceded by a course enrollment

process. All active students have to enroll a sufficient number of

courses to achieve at least the minimal pre-defined amount of

credits. If they do not reach the minimum limit, they cannot

proceed to the next semester. Students have to pass many courses

before finishing their studies successfully. All mandatory courses

must be completed. Students have to also pass several selective

and optional courses. Analyzing the enrollment statistics, we

found out that students prefer interesting and passable courses.

Universities usually offer a large number of courses and it is

difficult for students to be familiarized with all of them. They are

forced to search through the entire course catalog, read many

abstracts and syllabi, and compare a large amount of success rate

statistics. Naturally, they often discuss courses with other students

who have their own personal experiences. Obviously, the

decisions they have made during the course enrollment process

could significantly influence the whole study progress and the

final result.

2.2 System Overview
The current version of the recommender system monitors the

number of credits of enrolled courses to ensure successful

progression to the next semester. It also reminds them to enroll all

mandatory courses. Selective and optional courses are

recommended according to the student’s performance and

interests with respect to free time slots in students' timetables. The

system clarifies the decisions to students using notifications. The

system also warns against enrolled courses that usually cause

problems to students with similar characteristics. If the system

identifies a difficult course in the student’s enrollment, it informs

the student about the potential issue. It allows students to focus

more on this course or to revise the enrollment decision. Students

can also assess each recommendation whether the recommended

courses were interesting and adequately difficult. Based on these

assessments, the recommendation algorithms will be modified in

order to enhance the relevance of the further recommendations.

3. COURSE TEMPLATES
At our university, templates represent tree-like definitions of

mandatory and selective courses for each field of study. The

system allows checking the requirements that a student has

already accomplished. The completed courses/nodes are marked

with a green ring (o) and the uncompleted courses/nodes are

marked with a red cross (x).

We examined 67 templates defining the study requirements for

active students in the years of 2010-2013 at Faculty of

Informatics. An example of a template can be seen in Figure 1.

Proceedings of the 9th International Conference on Educational Data Mining 312

Figure 1. Template of mandatory and selective courses

However, the structure of the templates is often more

complicated. Each node defines how many child nodes have to be

completed (all, defined by the number of credits, or defined by the

number of children). The template does not enforce in which

semester courses should be enrolled.

3.1 Which courses do students have to pass

before enrolling a certain course?
Some courses have prerequisites that define what a student must

meet before he or she can enroll in a certain course. At our

university, prerequisites are composed of terms p1 … pn that are

associated with logical operators AND(&&), OR(||). A term pi can

be a course or a compound term. Prerequisites can be transformed

into the template subtree by the following rules:

 pi && pj → new node containing pi and pj with the rule of

fulfillment: all nodes

 pi || pj → new node containing pi and pj with the rule of

fulfillment: at least one of nodes

Figure 2. PA211 prerequisites: PV210 && (PA159 || PA191)

&& PV065

Example of such transformation can be seen in Figure 2. Each

template could be extended by prerequisites courses for students

to be able to count on them when creating their study plans.

3.2 When do students have to enroll a certain

course?
Students can decide in which semester they enroll in a certain

course. All graduate students that completed the template

requirements were selected and the semester in which the most of

them enrolled in the particular mandatory course was calculated

by Algorithm 1. Therefore, we remind courses in the proper

semesters with respect to students’ completed semesters.

Algorithm 1. Semester Selection

Function select_semester(course, template):

sem_max = {sem  semesters | sem2: number_students (sem2,

course, template) > number_students (sem, course, template)}

if (|sem_max| == 1) then

return sem_max[0];

else if (|sem_max| > 1) then

 return min(sem_max);

else

 return 1;

end if;

Function number_students(semester, course, template):

return the number of students having completed the given

template enrolled in the given course in the specific semester;

3.3 Which courses are passable for a certain

student?
We focused on the problem of predicting the final grade at the

beginning of the semester with the emphasis on identifying

unsuccessful students. The following grade scale was used: 1

(excellent), 1.5 (very good), 2 (good), 2.5 (satisfactory), 3

(sufficient), 4 (failed or waived). The value 4 represents students’

failure; the others represent a full completion.

We present two different approaches in [2]. Both approaches are

validated on 138 courses which were offered to students of the

Faculty of Informatics of Masaryk University between the years

of 2010 and 2013. The first approach is based on classification

and regression algorithms that search for patterns in study-related

data and also data about students' social behavior. We prove that

students’ social behavior characteristics improve prediction for a

quarter of courses. The second approach is based on collaborative

filtering techniques. We predict the final grades based on previous

achievements of similar students. We also present the novel

approach how to find out which approach is better for which

courses. Finally, we are able to correctly identify half of all

failures (that constitute less than a quarter of all grades) and

predict the final grades only with the error slightly higher than one

degree in the grade scale.

Due to the prediction error, we decided to lower the granularity of

predictions to the following three classes: excellent (1, 1.5), good

(2, 2.5), and bad (3, 4) to prevent the recommendation of difficult

courses. As it can be seen in Table 1, the mean absolute error was

below 0.5 and due to the high value of sensitivity the most of

unsuccessful students were revealed.

The approaches are beneficially utilized in the presented course

enrollment recommender system to warn students against difficult

courses and to recommend only passable optional courses.

Courses with predicted grade better than bad grade are considered

as passable for a student.

Table 1. Prediction Evaluation on Test set

Task MAE Sensitivity

Grade prediction 0.609 0.436

Excellent / good / bad prediction 0.474 0.899

Proceedings of the 9th International Conference on Educational Data Mining 313

4. SELECTIVE COURSES
Students can select different sets of selective courses from the

template with respect to their skills and the course content. They

have to select enough courses to fulfill the node requirements. We

were interested in the student behavior, e.g. information about the

most preferred courses.

4.1 Designed Recommendation Methods
We defined a course c for a student a as interesting by the

following function:

f (a, c) {

1 if the student a attended course c or marked it as

favorite

0 otherwise

This characteristic defined the student's interest in the course.

Therefore, each student can be characterized by a set of his or her

interesting courses. We designed the following 4 algorithms to

recommend courses:

S1. The most selected courses by students with the same

template. We were interested in the student behavior, e.g.

information about the most preferred courses. We computed

the most frequent path of graduate students in the template.

We were inspired by a simple ant colony algorithm and

marked each node with the number of students that passed

through. The path was computed by universal path finding

Algorithm 2.

S2. Courses enrolled by similar students. We calculated the

similarity between sets of interesting courses for each student

and all graduate students that already completed the

template. We utilized Jaccard’s coefficient. For each student,

we selected the most similar students and recommended their

courses. We were searching for the proper size of the

neighborhood and evaluated n  [1; 25]. When we sorted the

courses in the list by their frequency of occurrence in similar

student’s lists, we also explored how many of them were

suitable to be recommended. We examined x  [1; 10].

S3. Courses taught by favorite teacher. Students’ interesting

courses were examined and favorite teachers were revealed.

We considered all course lecturers and only student’s tutors.

The teacher’s popularity was defined as the sum of all his or

her courses which were considered as interesting.

Considering the teacher’s popularity, we recommended other

teacher’s courses if his or her popularity was above the

threshold (2).

S4. Courses enrolled by friends. We examined students' social

behavior characteristics and their mutual cooperation. We

focused on statistical data that represented the interaction

among students: explicitly expressed friendship, posts and

comments in discussion forums, e-mails statistics,

publication co-authoring, or files sharing. This information

served as the basis for computing social ties among students

by means of a sociogram [2]. From this sociogram, we were

able to reveal friends ties among students. We recommended

courses that friends considered as interesting and belonged to

the template.

The algorithms also observed the following rules:

 Courses recommended for a particular student were limited

to courses that should be enrolled in the certain semester:

Student’s semester was defined as the number of commenced

semesters and the course’s semester was defined as the

semester in which other students usually enrolled in the

course calculated by Algorithm 1.

 We also did not recommend courses that belonged to the

subtree of the template which students had already

completed.

 Only courses that could be enrolled in the actual semester

were recommended.

Algorithm 2. Finding Path in Template

Function process_node (node, template, student):

children ← children of the node;

for each child in children do

unless (child_computed) then

 process_node(child, template, student);

 end if;

end for;

path; # calculated path

sort children in descending order by the value in the node;

for each child in children do

path ← child;

 if (node_fulfilled(node, student)) then

 return path;

 end if;

end for;

Function node_fulfilled (node, student):

if (the given node is fulfilled by the given student) then

return true;

else

return false;

4.2 Recommendation Methods Evaluation
We can assume that students are familiar with the offer of

selective courses. Therefore, offline experiments [10] can be

suitable approach to evaluate previously mentioned algorithms.

All students that enrolled in the semester autumn 2014 and did not

complete their templates were selected: 1,444 students in total.

4.2.1 Settings for the algorithm S2
Firstly, we had to evaluate suitable settings for the algorithm S2.

Our task was to select suitable courses for students and

subsequently detect if they enrolled in them or not. Therefore, the

suitable evaluation metrics were precision and recall. To find a

balance between precision and recall, the F1 score was also

calculated.

Figure 3. Relationship among the size of the neighborhood n,

number of selected courses x and the value of F1 score

Proceedings of the 9th International Conference on Educational Data Mining 314

We selected 90% of examined students and calculated the F1

score of the recommendations. Figure 3 shows the relationship

among variables n, x, and the value of F1. Based on these

findings, the following setting was selected for algorithm S2 as

the most suitable: n = 8, x = 5. This conclusion was also verified

on the test set (the rest 10% of students).

4.2.2 All algorithms’ evaluation
We utilized all previously described algorithms to recommend

courses for each student. The coverage determines the percentage

of students for whom we were able to recommend at least one

course.

Table 2. Results of selective courses recommendation

Algorithm S1 S2 S3 S4

Coverage 0.97 0.63 0.60 0.54

Offered courses 2.97 4.81 3.85 4.43

Enrolled courses in the

semester autumn 2014 1.63 2.08 1.81 1.88

Enrolled courses anytime 2.82 3.15 2.49 2.85

Precision 0.81 0.56 0.48 0.47

Recall 0.55 0.42 0.28 0.39

F1 0.66 0.48 0.35 0.43

Rank 1 2 4 3

The coverage of approaches differs as it can be seen in Table 2.

S1 covered almost all students. In contrary, the rest of approaches

recommended courses for only 60% of selected students. The

average number of courses offered by each algorithm can be seen

in the second row. Algorithms recommended 3-5 courses on

average. The average number of courses that students really

enrolled in autumn 2014 can be seen in the third row. Because the

university does not define when students have to enroll courses,

we extend the searching for enrollment also to the next semesters.

The average number of courses that students really enrolled

anytime from autumn 2014 till now can be seen in the fourth row.

As it can be seen, the number of enrolled courses almost doubled

in all cases. Finally, we also calculated precision and recall for all

algorithms. The algorithm S1 reached the best results.

4.2.3 Which courses are selected the most often?
H1: We supposed that students select easier selective courses.

For finding the easiest way to complete the template, we assessed

each course using its success rate (the percentage of successful

students to all students in the course). However, we had to

penalize courses with a small number of students and also the

courses with smart students only (with excellent average grade).

Therefore, the adjusted success rate (ASR) was defined as:

where CSR defined the course success rate, ESAG defined the

average grade of enrolled students, NES defined the number of

enrolled students in a course, and MAX_ENR was a constant for

the template and defined the maximum number of students

enrolled in any course from the template. We calculated the

minimal adjusted success rate of courses that have to be passed in

the subtree for each node of the template. Subsequently, we

employed the Algorithm 2 that selected the easiest courses till the

node requirements were met.

For each template t  T we constructed the easiest path (EP) and

also the most frequented path (MFP). Both paths can be

represented as a set of selected courses on the path. Jaccards'

coefficient (JC) was calculated to compare these sets of courses.

The similarity of paths was 0.8 on average for all templates.

∑ 

H1 was confirmed. Correlation of EP and MFP over all templates

confirmed our hypothesis that students usually select easier

selective courses.

5. OPTIONAL COURSES
To fulfill all study requirements, students have to obtain the pre-

defined number of credits in their studies. Except credits obtained

from mandatory and selective courses, they have to select optional

courses. Optional courses for each student were defined as courses

that do not belong to the student's template.

5.1 Designed Recommendation Methods
We utilized the same methodology as described in Section 4 for

recommendation of selective courses. The main difference was

that algorithms did not restrict courses from templates. The

courses recommended by algorithms were limited to only passable

courses (the predicted grade was not bad) according to the method

introduced in Section 3.3.

S1. The most selected courses by students with the same field

of study. All optional courses of all students of a certain field

of study were selected. The number of students that were

interested in each course was calculated and the sorted list of

all courses based on the calculated value was created from

the most interesting.

S2. Courses enrolled by similar students. We computed the

student similarity with all active students and also students

graduated in the last five years. The revealed courses were

sorted into a list by the number of occurrences in similar

students’ sets of optional courses.

S3. Courses taught by favorite teacher. Courses were sorted

into a list in decreasing order by the popularity of a teacher.

S4. Courses enrolled by friends. Courses were sorted into a list

by the number of occurrences in friends’ sets of optional

courses.

5.2 Recommendation Methods Evaluation
As a contrary to the selective course recommendation, we

supposed that students are not familiarized with all the optional

courses. Therefore, the offline experiments were not sufficient

evaluation technique in this case and we had to conduct a user

study [10]. We contacted only selected group of students to

request them to assess our recommendations.

We could approach 607 students enrolled in one of our courses in

the last semester. Considering the number of students and

expecting the lower response rate of students, we selected 5 top

rated courses by each algorithm for each student. The coverage of

approaches when the algorithm found at least one course to offer

is presented in Table 3 in the first row. Only for a half of students,

we revealed friends who could inspire students with interesting

courses. The average number of offered courses by each algorithm

can be seen in the second row. The approach which uses social

ties (S4) offered only 4 courses on average.

In our experiment, we offered 10 courses at maximum selected

using the 2 our algorithms Si and Sj for each student. We sorted

the students in the list by their average grade in order to be

Proceedings of the 9th International Conference on Educational Data Mining 315

independent of students’ characteristics and nearly randomly

selected 2 algorithms that offered its top 5 courses each at

maximum to students. We balanced the number of occurrence of

each algorithm due to the low coverage of S4. We also merged the

list of courses of Si and Sj in order to not prioritize one of them in

the following order: Si1, Sj1, Si2, Sj2, Si3, Sj3, Si4, Sj4, Si5, and Sj5.

When both algorithms selected the same course, the course

appeared only once in the list. The assessment of the course was

added to results for both algorithms.

Table 3. Algorithms coverage

Algorithm S1 S2 S3 S4

Coverage 1 1 0.96 0.49

Offered Courses 4.98 4.98 4.47 4.02

Subsequently, students were asked for assessing the

recommendation during their course enrollment process to

increase the possibility of their reaction. Students could mark

courses using the following attributes: like, do not like or leave it

unanswered. Overall, 172 students responded. The most of them

responded in one week since the invitation (see Figure 4).

Figure 4. Students’ reaction period

The distribution of students’ reactions is shown in Figure 5. The

best recommendation was offered by the algorithm S2. The

algorithm is based on the similarity of students’ sets of interesting

courses.

Figure 5. Assessed courses

The number of students assessed (NSA) our algorithms was

almost in balance. Each student was included twice: for each of

algorithms that assessed. As it can be seen in Table 4, we obtained

more assessments of courses inspired by friends’ selections (S4).

It can mean that students with more social ties in the system are

more active. We omitted recommendations that were not assessed.

For all algorithms we obtained enough assessments to be able to

properly evaluate them. We utilized the same evaluation metrics

as for selective courses besides recall because we could not

compute false negatives. On average for all algorithms, students

liked 2-3 of 4-5 offered courses.

Table 4. Algorithms evaluation

Algorithm S1 S2 S3 S4

NSA 79 79 82 99

Liked Courses 2.52 2.97 2.35 2.07

Offered Courses 5 5 4.8 3.9

Precision 0.53 0.60 0.52 0.55

Rank 3 1 4 2

Considering all evaluation methods, we determined the ranking of

algorithms’ success rate. Algorithm based on similarity of

interesting courses (S2) reached the best results. However, the

final solution will combine all algorithms to achieve best results.

6. RECOMMENDATIONS
We have designed new elements for Registration Application

which might be available to all students of Masaryk University in

the future. The first enhancement presents the predicted difficulty

of courses to students. The predictions are computed by the

method described in Section 3.3. The predicted grades correspond

to the following color:

 xcellent grade green color.

 ood grade yellow color.

 Bad grade red color.

All predictions are presented as the icons of corresponding color.

When we have no predictions, there is no icon. We try to predict

grades of courses that students enrolled or courses that we

recommend to them (see Figure 6). Based on these warnings,

students can concentrate on difficult courses or revise their

choices depending on the planned workload in the semester.

The second improvement is the panel on the right (see Figure 6)

where the recommended courses are presented. For each student

we remind mandatory courses, recommend selective and optional

courses selected by methods introduced in Sections 4 and 5, and

also recommend their prerequisite courses. After clicking the

wrench icon, the short explanation of each recommendation is

displayed to increase students’ trust to the system [5]. They can

also assess each recommendation. Based on assessments we

continuously improve our algorithms.

7. CONCLUSION
We presented a pilot version of course enrollment recommender

system that reminds students their duties, warns them against

difficult courses and recommends them potentially beneficial

courses. Therefore, the system helps students with their decisions

during the enrollment process at the beginning of each semester.

More specifically, we designed four algorithms suitable for the

course recommendation. The first algorithm searches for the most

frequently enrolled courses. The second algorithm utilizes

similarities of students based on courses of their interests. The

third algorithm recommends courses of students’ favorite

teachers. The last algorithm calculates the social ties among

Proceedings of the 9th International Conference on Educational Data Mining 316

students and selected courses which were interested for students’

friends.

The most suitable algorithm for the selective course

recommendation was the first described algorithm. Students

usually selected easier courses defined in their templates. In

contrary, the best results for the optional courses recommendation

achieved the second algorithm utilizing students’ similarities.

However, we decided to employ all methods in the system due to

the high students’ satisfaction with recommendations. Optional

courses were also recommended only if we predicted that students

could pass the course and they had free time slots in the timetable

for the course. We validated all designed methods on data

originated from students of the Faculty of Informatics Masaryk

University stored in the university information system.

We also introduced the environment that presents

recommendations to students, offers them the explanations why

the courses were selected, allows them to leave a feedback, warns

them against difficult courses, and reminds them important events

that should be accomplished, e.g. enroll in mandatory courses or

enroll enough credits. The designed course enrollment

recommender system will be a part of the university information

system in the future.

8. REFERENCES
[1] Bendakir, N. and Aimeur, E. 2006. Using Association Rules

for Course Recommendation. In Proceedings of the AAAI

Workshop on Educational Data Mining, pp. 31-40.

[2] Bydžovská, H. 2016. A Comparative Analysis of Techniques

for Predicting Student Performance. Proceedings of the 9th

International Conference on Educational Data Mining 2016

(Accepted).

[3] Lee, J. Ch. Y. and Lee, K.-W. 2011. An intelligent course

recommendation system. Smart Computing Review, 1(1).

[4] Loll, F. and Pinkwart, N. 2009. Using collaborative filtering

algorithms as elearning tools. In Proceedings of the 42nd

Hawaii International Conference on System Sciences.

[5] O'Donovan, J. and Smyth, B. 2005. Trust in Recommender

Systems. Proceedings of the 10th International Conference

on Intelligent User Interfaces, pp. 167-174.

[6] O’Mahony, M. P., and Smyth, B. 2007. A recommender

system for on-line course enrolment: an initial study. In

Proceedings of the ACM conference on Recommender

systems (RecSys ’07), pp. 133–136.

[7] Parameswaran, A., Venetis, P., and Garcia-Molina, H. 2011.

Recommendation systems with complex constraints: A

course recommendation perspective. ACM Trans. Inf. Syst.,

29(4):20:1–20:33.

[8] Recker, M. M., Walker, A., and Wiley, D. 2004.

Collaborative information filtering: A review and an

educational application. International Journal of Artificial

Intelligence in Education, Volume 14 Issue 1, pp. 3-28.

[9] Romero, C., Zafra, A., Luna, J. M., Ventura, S. 2013.

Association rule mining using genetic programming to

provide feedback to instructors from multiple-choice quiz

data. Expert Systems 30(2): 162-172.

[10] Shani, G. & Gunawardana, A. 2011. Evaluating

recommendation systems. Recommender Systems

Handbook, pp. 257-297.

[11] Sobecki, J. and Tomczak, J. M. 2010. Student courses

recommendation using ant colony optimization. In

Proceedings of the Second international conference on

Intelligent information and database systems: pp. 124-133.

[12] Vialardi, C., Chue, J., Peche, J. P., Alvarado, G., Vinatea,

B. Estrella, J., and Ortigosa, A. 2011. A data mining

approach to guide students through the enrollment process

based on academic performance. User Modeling and User-

Adapted Interaction, Volume 21, Issue 1, pp. 217-248.

[13] Vuorikari, R., Hummel, H., Manouselis, N., Drachsler, H.,

and Koper, R. 2011. Recommender Systems in technology

enhanced learning. In Recommender systems Handbook, pp.

387-415. Spriger Verlag.

Figure 6. Demonstration of Interface

Proceedings of the 9th International Conference on Educational Data Mining 317

